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Abstract
We obtain a system of exact solutions of the Dirac equation for an electron
moving in a constant homogeneous external magnetic field with an account
of its vacuum magnetic moment and assumed Lorentz invariance violation in
the minimal CPT-odd form in the framework of the standard model extension.
Using these solutions, characteristics of the particle synchrotron radiation are
calculated, and possible observable effects caused by the Lorentz non-invariant
interaction are described. We demonstrate that the angular distribution of the
radiation has specific asymmetry, which can be explained as a consequence
of non-conservation of transversal electron polarization in the presence of a
background Lorentz non-invariant condensate field.

PACS numbers: 03.30.+p, 12.15.Cc, 12.15.Ji

1. Introduction

According to the modern viewpoint, the standard quantum field theory model of elementary
particles is a low-energy approximation of a certain more fundamental theory which unites in
some way all known types of physical interactions together. As a consequence there must exist
(and, in spite of their extreme subtleness, be observable) specific effects, which are not inherent
in the standard model and which reveal some features of the underlying more profound theory.
In particular, the Lorentz- and CPT-symmetry breaking may be expected to occur for physical
particles, caused by some dynamic reasons lying outside the standard model. The theoretical
framework, which covers the standard model and includes a phenomenological description of
Lorentz invariance violation in a rather general form, is known as the standard model extension
(SME) [1].

The emergence of the SME yielded intense theoretical investigation and discussion of
its implications for particle physics [2, 3]. Among new phenomena predicted and already
partially available for high-precision observations, one can mention the following: ‘distortion’
of energy–momentum relations of physical particles, effective anisotropy and dispersion of
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the vacuum (due to the nature of the SME, this effect is inevitably present in almost all
situations considered); non-trivial differences in properties of particles and antiparticles, and
particles with different helicities, additional anomalous magnetic moments [4–7]; possible
new channels of high-energy reactions (for instance, processes like e− → e− + γ, γ → e+ +
e− [8]); specific asymmetry of angular distributions of radiation and reaction products (an
example of this kind is shown in the present work); effects at finite temperature [9]; various
astrophysical manifestations [4, 10, 11]; etc.

In the present work, we shall actually consider a very particular limit of the SME related
to the minimal Lorentz- and CPT-symmetry breaking in the electron sector of the theory (the
reasons for making this approximation are discussed further in the paper in more detail); it is
described by means of the additional (to the standard fermion Lagrangian) term −ψγ 5γ µbµψ ,
where bµ is a pseudovector quantity independent of the spacetime coordinates xµ in every
fixed reference frame, regarded as a vacuum expectation value of some object of a more
fundamental theory.

We shall study the synchrotron radiation of a high-energy electron supposing (in the same
way as was done in [8]) that |b0| � |b|; such an assumption does not contradict most of the
estimates available at present (see, e.g., [3, 4]). So we consider the interaction of the fermion
field ψ with the condensate bµ as the only type of Lorentz invariance violation present in our
theory, neglecting other possible types (in particular, referring to the photon sector).

In contrast to the earlier publications on the same subject, where only classical approach
was adopted (see, e.g., [11] and also [12, 13]), we shall carry out consistent quantum
consideration of the phenomena, including both the motion of an electron and its radiation.
We take Lorentz invariance violation into account exactly, i.e. avoiding (at the stage of
quantization) the perturbation theory approximation and considering b0 as a given classical
external field in addition to the magnetic field background. We obtain a system of exact
solutions of the modified Dirac equation for an electron with a vacuum magnetic moment in
a constant magnetic field, which is necessary for the quantum description of the fermion field
in the Furry picture [14]. Employing the methods of quantum electrodynamics (QED), with
the use of these solutions, we calculate the asymptotic expressions for the spectral-angular
distribution of the electromagnetic radiation in the weak-field limit which incorporate yet all
the quantum corrections arising, and we pay special attention to the radiation properties caused
by the Lorentz invariance violation assumed in the theory.

Throughout the work, the natural units h̄ = c = 1 are adopted.

2. Motivations

In this section, let us recall some of the SME principles and consider the issues related to a high-
energy electron handled within this framework. The Lagrangian of the SME is obtained as
the most general one describing the possible Lorentz non-invariant interactions and consistent
with the fundamental principles of the modern quantum field theory (such as gauge invariance
and power-counting renormalizability) [1]. It is believed that these interactions are due to
the spontaneous Lorentz-symmetry breaking in the underlying theory, and this imposes the
requirement that the corresponding Lagrangian terms are Lorentz scalars. Consequently, in
the low-energy limit, the extended quantum electrodynamics emerges from the lepton-gauge
sector of the SME. Its Lagrangian can be written in the following general form:

LQED Extension = LQED + Llepton + Lphoton, (1)

where LQED is the well-known QED Lagrangian:

LQED = − 1
4FµνF

µν + 1
2ψ iγ µ

↔
Dµψ − ψmψ. (2)
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Llepton andLphoton are the terms describing the Lorentz non-invariant interactions in the electron
and the photon sectors of the theory, respectively. They can be decomposed into the sum of
the CPT-even and -odd parts:

LCPT-even
lepton = − 1

2ψσµνHµνψ + 1
2ψ iγ µcµν

↔
Dνψ + 1

2ψγ 5 iγ µdµν

↔
Dνψ, (3a)

LCPT-odd
lepton = −ψγ µaµψ − ψγ 5γ µbµψ, (3b)

LCPT-even
photon = − 1

4 (kF )αβµνF
αβFµν, (3c)

LCPT-odd
photon = 1

2 (kAF )αεαβµνA
βFµν. (3d)

The dimensionless coefficients cµν, dµν, (kF )αβµν and the coefficients Hµν, aµ, bµ, (kAF )α
with dimensions of mass are the tensor parameters independent of the spacetime coordinates
xµ, encoding the information relevant to the Lorentz invariance violation for physical particles
in any given reference frame (for further details, see [1, 3] and other reviews of the SME).

At present, most of the coefficients describing Lorentz invariance violation in the extended
QED have been tightly constrained from the existing experimental data, including those of the
experiments aimed at the search of the essentially new phenomena mentioned in section 1 [3].
The bounds available have a different order of magnitude for different sets and combinations
of the coefficients (it is implied, of course, that the quantities with the same dimensionality
are being compared), and it turns out that there still exists at least one relatively loosely
constrained parameter of dimensions of mass. Considering the CPT-odd fermion Lagrangian
term −ψγ 5γ µbµψ , one may argue [4] that the upper bound on the time-like component of
bµ may be |b0| < 10−2 eV, while for the space-like components one has |b| < 10−18 eV or
even stronger, and the remaining tensor coefficients are also estimated to be smaller than the
upper bound on b0 [3]. This makes it reasonable to study the effects caused by the non-zero
parameter b0 in the first place since it could actually be the greatest one among the others (with
the same dimensions). One of the aims of our investigation is to examine the consequences of
this situation for the synchrotron radiation and to place bounds on b0, possibly more stringent
than those available in the literature.

At the same time, one may argue that the dimensionless coefficients (that are present in
the kinetic-like terms of (3a)–(3d)) do not actually play a dominant role when considering
any high-energy processes unless going into the Planck-scale physics (this differs significantly
from the viewpoint accepted in [11]). In fact, it is believed that the scale that governs
the values of the SME-specific parameters is the Planck scale, namely, the Planck mass
MP � 1.22 × 1028 eV. This implies that coefficients with higher mass dimensions have to
possess additional factors of MP with respect to the others [1]. It is then obvious that the
Lagrangian terms containing the coefficients with the highest possible mass dimensions (i.e.
mass1) are of primary importance for a particle with a given energy E � MP since they
do not involve any derivatives. In particular, if one has the relation |bµ| ∼ MP|cµν | for the
characteristic scales of the parameters bµ and cµν then the average values of the corresponding
Lagrangian terms are related as follows: |〈iγ µcµνD

ν〉| ∼ E
MP

|〈−γ 5γ µbµ〉|, and this is also
valid for the other appropriate terms in (3a)–(3d) as well. Thus, one may neglect the effects
caused by non-zero dimensionless Lorentz-violating coefficients in the extended QED when
studying the dominant phenomena at feasible energies.

Taken together, the arguments presented above justify the choice of a simplified model
(obtained from the extended QED) in which there exists only one type of Lorentz invariance
violation described by means of the CPT-odd fermion Lagrangian term −ψγ 5γ µbµψ where
bµ = {b, 0}. As we believe, this is appropriate for investigating whether |b0| is indeed
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much greater than other related parameters of the extended QED by way of studying the
characteristics of the synchrotron radiation.

It should be noted, however, that there is an important phenomenon that cannot be
neglected in our case when considering the motion of an electron in a magnetic field: vacuum
magnetic moment of the particle. Indeed, provided µ � µ0

e2

2π
where µ0 = e

2m
[15], the

characteristic energy of the corresponding interaction is µH ∼ 10−6 eV in the typical
laboratory field H ∼ 104 Gauss, so it may be of the same order of magnitude as the quantity b0

(or may be less or greater, the latter being somewhat more likely). Thus, we may not neglect
the influence of the vacuum magnetic moment when studying the synchrotron radiation with
an account of the Lorentz invariance violation in the form we have chosen, and it turns out that
the electron vacuum magnetic moment does interact with the condensate bµ in a nontrivial
way giving rise to the prevailing observable effects (see the main text below).

We have considered the Lagrangian (1) in the context of the SME which is based
on the conjecture of spontaneous Lorentz symmetry breaking in a more fundamental and
profound theory, e.g., string theory (this is the approach generally adopted in [1]). At the
same time, similar and even the same terms as those present in (1) can arise under some
other circumstances. In particular, it has been shown [16] that certain weak background
effects possible in some generalized theories of gravity should also affect the SME-specific
coefficients in (3a)–(3d), and concerning the quantity bµ, one can obtain the following leading-
order expression for its effective value:

(beff)µ = bµ − 1
4∂αχβγ εαβγµ + 1

8T αβγ εαβγµ. (4)

Here, χµa is the antisymmetric part of the vierbein fluctuation against the Minkowski spacetime
background and T λ

µν is the torsion tensor of the Riemann–Cartan spacetime (for more detail,
see [16] and references therein). Thus, global spacetime curvature and possible torsion of the
Universe obviously lead to the effects similar to those of the spontaneous Lorentz invariance
breaking, so that they may interfere in a peculiar way enhancing or cancelling each other
(see also [17]). Moreover, a mechanism generating similar effects of Lorentz invariance
violation involving chiral fermions has also been proposed [18]. Anyway, in general, since the
Lagrangian (1) and the experimental bounds on the SME-specific coefficients of the extended
QED are actually model independent (they are derived using the standard quantum field theory
techniques), the origin of these coefficients does not affect the way by which we are going to
investigate the model and examine the phenomena arising, provided that the effective Lorentz-
violating parameters remain constant in the spacetime region, it being large enough (and this
is usually assumed when working in the context of the SME).

In what follows, we study the motion of an electron in an external magnetic field at
the quantum level and obtain the characteristics of its electromagnetic radiation using the
techniques of QED.

3. The model

The Lagrangian obtained for an electron interacting with the electromagnetic field Aµ and
background constant condensate field bµ has the form

L = ψ
(
iγ αDα − m + 1

2µσαβFαβ − γ 5γ αbα

)
ψ. (5)

Here Fαβ is the electromagnetic field tensor; µ is the electron anomalous (vacuum) magnetic
moment [19], which we treat approximately as a constant quantity: µ � µ0

e2

2π
where µ0 = e

2m

[15]; σµν = i
2 [γ µ, γ ν], γ 5 = −iγ 0γ 1γ 2γ 3. We accept e > 0 so that the electron charge

qe = −e, and the covariant derivative is Dµ = ∂µ − ieAµ. We assume that in the laboratory
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reference frame bµ = {b, 0}, b = const; let there also exist a constant homogeneous external
magnetic field oriented along the z-axis: H = Hez, H > 0.

One can, considering an electron with a definite energy so that ψ(t, r) = e−iEt(r),
represent the equations of motion for the field ψ resulting from (5) in the Hamiltonian form:

HD = E, (6)

where HD is the Hermitian energy operator:

HD = αP + γ 0m − eA0 + µHγ 0�3 − bγ 5, (7)

P = p + eA is the canonical quantum-mechanical momentum, p = −i∇,α = γ 0γ, �i =
1
2εijkσ

jk . In order to perform the quantization of the theory, one must solve the eigenvalue
problem (6) and find a complete system of the electron wavefunctions {}.

4. Solution of the equations of motion

Let us take the electromagnetic potential of the external magnetic field in the axial-symmetric
form:

Aµ = {0, A}, A = 1
2 {−Hy,Hx, 0}. (8)

It is obvious that [pz,HD] = 0; therefore we shall further consider the problem (6) on the
subspace with a definite fixed pz ≡ p:

(x, y, z) = 1√
2π

eipzφ(x, y), (9)

so that (6) turns into

HDφ = Eφ, (10)

where in expression (7) for HD one must take P3 = p so that P = {P̂1, P̂2, p} (we use the
‘hat’ symbol to denote operators in order to distinguish them from c-values where a confusion
is possible). Let us now introduce the ‘mixing angle’ δ as follows:

δ = arctan
b

µH
, (11)

so that

µH = µ̃H cos δ, b = µ̃H sin δ, (12)

where

µ̃H =
√

(µH)2 + b2. (13)

We shall name the quantity µ̃ an effective anomalous magnetic moment. Using the angle δ,
we go over to the effective mass and momentum:(

m̃

p̃

)
=

(
cos δ sin δ

− sin δ cos δ

) (
m

p

)
. (14)

It should be noted that the effective mass m̃ may take negative values, when p < −m cot δ. It
is easy to see that with the help of the unitary transformation

U−1HDU = H̃D, (15)

where

U = exp

(
− δ

2
γ 3

)
= cos

δ

2
− γ 3 sin

δ

2
, (16)
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the Hamiltonian (7) can be brought to the following form:

H̃D = αP̃ + γ 0m̃ + µ̃Hγ 0�3, (17)

where P̃ = {P̂1, P̂2, p̃} (P̂1, P̂2 are the same as in the Hamiltonian (7)). Thus, the problem
(10) is formally equivalent to the problem

H̃Dφ̃ = Eφ̃, (18)

since the operators H̃D and HD have identical eigenvalues, and their eigenvectors are related
by the transformation (16): φ = Uφ̃. The Hamiltonian (17) formally describes an electron
with an anomalous magnetic moment in an external magnetic field without Lorentz-symmetry
breaking. The corresponding problem (18) has been studied and solved in [20]. (This work,
however, deals with the physical electron with mass greater than zero. Nevertheless it can be
easily seen that in the case m̃ < 0 one can, with the help of one more unitary transformation,
H̃ ′

D = γ 5H̃Dγ 5, effectively perform the change in the Hamiltonian: m̃ → −m̃, µ̃ → −µ̃;
after that all results obtained in [20] can be applied to H̃ ′

D.)
Let us give here only the final results of the solution of the problem (10). The energy

values under investigation can be written as follows:

E = ε

√
(� + µ̃H)2 + p̃2, ε = ±1, (19)

where

� = ζ
√

m̃2 + 2eHn, n = 0, 1, . . . , ζ =
{±1, n > 0,

−sign m̃, n = 0.
(20)

The quantity � is the eigenvalue of the electron polarization (or spin) operator

�̂ = �⊥ cos δ + �‖ sin δ, (21)

where

�⊥ = m� + iγ 0γ 5[� × P], �‖ = �P, (22)

which can be diagonalized together with HD; it is defined in an unambiguous way (when
µ̃ �= 0). This operator can be named a ‘mixed’ spin operator since it is a superposition of
the well-known transversal �⊥ and longitudinal �‖ polarization parts with the coefficients
cos δ and sin δ, respectively (for the properties of the electron spin operators, see e.g.
[21, 22]). In expression (20), n is the principal quantum number; it can be easily proved
that the corresponding integral of motion is (α1P1 + α2P2)

2 with the eigenvalues 2eHn. In
the case of n = 0, the sign of � (i.e. the spin orientation) as follows from (20) takes a definite
value. When δ �= 0 it depends on p (through m̃, according to (14)). Besides, it is clear
that the form (21) is valid not only under the assumption (9) but also in the general case
when P3 = pz ≡ −i∂z; moreover, � is a gauge-invariant quantity (as it contains only the
gauge-invariant canonical momentum P).

The wavefunctions corresponding to the spectrum (19) in the polar coordinate system
(r, ϕ) are as follows:

φ(r, ϕ) = 1√
2π

ei(n−s−1/2)ϕ




c1 e−iϕ/2In−1,s (ρ)

ic2 eiϕ/2In,s(ρ)

c3 e−iϕ/2In−1,s (ρ)

ic4 eiϕ/2In,s(ρ)




√
eH, ρ = 1

2
eHr2, (23)

where In,s(ρ) are the Laguerre functions:

In,s(ρ) =
√

s!

n!
e−ρ/2ρ(n−s)/2Ln−s

s (ρ), (24)
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expressed by means of the generalized Laguerre polynomials Ll
s(ρ):

Ll
s(ρ) = 1

s!
eρρ−l ds

dρs (e
−ρρs+l ); (25)

s = 0, 1, . . . is the radial quantum number and {ca} are constant coefficients depending on
the particle state. Solutions (23) are chosen to be the eigenfunctions of the z-component of
the fermion particle angular momentum operator Jz = −i ∂

∂ϕ
+ 1

2�3, which corresponds to the
axial symmetry existing in our problem:

Jzψ = (
l − 1

2

)
ψ, l = n − s. (26)

In the standard (or Dirac) representation of the γ -matrices the coefficients {ca}, which
meet the normalization requirement for the wavefunctions∫

r dr dϕφ†φ = 1, (27)

can be written as follows:


c1

c2

c3

c4


 = 1

2
√

2




A(Pα + εζQβ)

−ζB(Pα − εζQβ)

A(Pβ − εζQα)

ζB(Pβ + εζQα)


 , (28)

where

A =
√

1 +
m̃

�
, P =

√
1 +

p̃

E
,

B =
√

1 − m̃

�
, Q =

√
1 − p̃

E
,

(29)

and

α = cos
δ

2
− sin

δ

2
, β = cos

δ

2
+ sin

δ

2
. (30)

Expression (28) is valid for all n and m̃. It should be noted that expressions (19), (20) for
the energy E and the quantity � and expression (28) for the coefficients {ca} do not include
the quantum number s. This degeneracy is typical of the electron in a uniform magnetic field
problem and is related to the invariance with respect to the choice of the position of the electron
center of orbit.

Thus, we have found the eigenvalues and obtained the orthonormalized eigenfunction
system of the Hamiltonian HD; the full set of quantum numbers is {n, s, p, ζ, ε}, where

n, s = 0, 1, . . . , −∞ < p < +∞, ζ = ±1, ε = ±1. (31)

The wavefunctions and the energy spectrum are formally similar in structure to those of the
problem without Lorentz invariance breaking considered in [20]. However in our case, the
parameters m̃, p̃, µ̃ are effective quantities depending, as well as the coefficients (28), on
the mixing angle δ.

5. Synchrotron radiation

In this section, we investigate the electromagnetic radiation of an electron moving in a magnetic
field using the wavefunctions obtained earlier. The radiation is handled at the entirely quantum
level, in contrast to the classical approach adopted in most of the present-day publications
on the similar subject (see, e.g., [11–13]). We shall calculate the asymptotic expressions for
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the spectral-angular distribution of the one-photon radiation of a high-energy electron in the
weak-field limit. Unlike Schwinger’s method that takes only the first quantum corrections into
account [23], we use the technique that provides us with all the quantum corrections arising.
In this respect, our results are exact (i.e. we do not actually make any expansion in powers of
h̄), although they are asymptotic, appropriate for the case of the weak magnetic field H � Hc

(with respect to Schwinger’s critical field Hc � 4.41 × 1013 Gauss), with the small parameter
being the ratio of the mass of the electron to its energy.

It is essential to consider the radiation phenomena at the quantum level, since the effects
we are interested in (related to the Lorentz invariance violation present in the theory) are
actually due to the change of the spin state of the electron (described by coefficients (28) of
the wavefunctions (23)), and spin effects should disappear in the classical limit.

5.1. General theory

Consider the electron1 transitions from some given initial state  with energy E to a lower
state  ′ with energy E′. Assuming that the system of the wavefunctions is orthonormalized,
the total radiation power obtained using the methods of QED (the standard Feynman rules)
can be written in the first order of e2 as follows (see, e.g., [24], and also [21, 22]; we follow the
approach of [21, 22] while describing the theory of the synchrotron radiation in this section):

W = e2

2π

∫
d3k δ(E − E′ − k)S, S = |〈α〉f|2. (32)

Here k is the wave vector of the photon emitted so that the energy of the photon is ω = k ≡ |k|
and f is the vector characterizing the polarization properties of the photon (it is always
orthogonal to k; the radiation is treated in the temporal gauge); the vector quantity 〈α〉 is
related to the transition amplitude:

〈α〉 =
∫

d3x  ′†(α e−ikx). (33)

Let (θ, ϕ) be the angles characterizing the direction of the radiation of a given polarization
in a spherical coordinate system with the z-axis parallel to the magnetic field orientation, so
that

k = k{sin θ cos ϕ, sin θ sin ϕ, cos θ}. (34)

Evaluating the integral in (33), due to the general form of the wavefunctions (9), (23), one
finds (see [22] for details of these calculations)

〈α〉 = 〈ᾱ〉Is,s ′(x)δ(p′ − p + k cos θ), (35)

where
−i〈ᾱ1〉 = (c′∗

1 c4 + c′∗
3 c2)In,n′−1(x) − (c1c

′∗
4 + c3c

′∗
2 )In−1,n′(x),

〈ᾱ2〉 = (c′∗
1 c4 + c′∗

3 c2)In,n′−1(x) + (c1c
′∗
4 + c3c

′∗
2 )In−1,n′(x),

〈ᾱ3〉 = (c′∗
1 c3 + c′∗

3 c1)In−1,n′−1(x) − (c2c
′∗
4 + c4c

′∗
2 )In,n′(x),

(36)

and this is obtained, of course, using the standard representation of the γ -matrices we have
chosen. The argument of all Laguerre functions in (36) is defined as follows:

x = 1

2eH
k2 sin2 θ. (37)

The quantities with and without a dash in (36) are related to the final and initial states of the
electron, respectively, and we also use this notation in what follows.

1 We assume ε = ε′ = +1 throughout this section; the generalization for positrons is straightforward.
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Making the summation over the quantum numbers n′, s ′, p′ characterizing the final state
and evaluating the integral over k in (32), one obtains the expression for the radiation power
(related to one unit of length of the z-axis):

W =
∑
n′

e2

2π

∫
k2 sin θ dθ dϕ∣∣1 +

(
∂E′
∂k

)
n′
∣∣ S̄, S̄ = |〈ᾱ〉f|2 , (38)

where k and p′ obey the conservation laws of the energy and z-component of the momentum
respectively:

E′ = E − k, p′ = p − k cos θ. (39)

We use the symbol
(

∂E′
∂k

)
n′ to denote a derivative of the energy E′ considered as a function of

p′, where p′ is defined through (39), with respect to k, with n′ being fixed. It is important that
since there exists the relation (see [22])

∞∑
s ′=0

Is,s ′(x)Im,s ′(x) = δsm (for all allowed x), (40)

the summation has taken the numbers s, s ′ out of consideration; this is closely connected
with the degeneracy and invariance existing in our problem (see section 4). Thus, the initial
quantum number s may be arbitrary.

Note that we are still considering the electron initial and final states with the definite spin
quantum numbers ζ and ζ ′ respectively, i.e. we do not make any averaging or summation over
them.

5.2. Radiation of an ultra-relativistic electron

Let us now consider the most interesting case of a high-energy particle (m/E ≡ λ � 1) in a
comparatively weak magnetic field (H � Hc = m2/e � 4.41 × 1013 Gauss) with the initial
longitudinal momentum p = 0, which corresponds to the electron states with n � 1. Indeed,
examining this case, one approximately finds from (19)

n � 1

2λ2

Hc

H
� 1. (41)

When calculating radiation effects, we shall restrict ourselves to the zero approximation in
µ̃H/E. In fact, it is not difficult to prove that only three small parameters are of importance in
our problem: λ, δ, µ̃H/E. However, it is then easily seen that under typical laboratory
conditions (E ∼ 1 GeV,H ∼ 104 Gauss) the estimate |δ| � µ̃H/E is valid if only
b � 10−20 eV, which justifies our approximation µ̃H/E → 0 for this range of b (also
see the Discussion).

It is obvious that the chosen approximation µ̃ → 0 reduces the problem to the case of the
Dirac Hamiltonian:

H 0
D = αP + γ 0m, (42)

which follows from (7), when µ → 0, b → 0. Operator (42) has the spectrum

E =
√

m2 + 2eHn + p2, (43)

and admits of an ambiguity in the choice of a spin operator commuting with it (see, e.g.,
[21, 22]). In our case, however, this ambiguity is removed and the operator (21) should be
used, which corresponds to a ‘mixed’ (transversal–longitudinal) polarization of the particle.
Thus, the problem is formally reduced to the radiation of an electron without an anomalous
magnetic moment or Lorentz symmetry violation, polarized in a definite way. This (namely the
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dispersion law (43) and the general form of the wavefunctions (9), (23)) makes the well-known
theory of synchrotron radiation considered in [21, 22] applicable to our case.

In particular, if relation (43) holds, then system (39) can be solved unambiguously with
respect to k, p′, and this yields (note that we are considering the case p = 0)

k = E

sin2 θ

(
1 −

√
1 − β2

(
1 − n′

n

)
sin2 θ

)
, β2 = 1 − λ2. (44)

Since we are considering the states with n � 1, it is a good approximation to change the sum
in (38) into an integral treating n′ as a continuous variable. With the help of (44), it is possible
to change the variable of integration from n′ to k explicitly:

dn′∣∣1 +
(

∂E′
∂k

)
n′
∣∣ = − E′

eH
dk. (45)

In that way, one obtains the spectral-angular distribution w(k) of the radiation (we imply, of
course, that 0 < k < E):

W =
∫

dk sin θ dθ dϕw(k), w(k) = e2

2π

E′k2

eH
S̄. (46)

In cases n, n′ � 1 we are interested in2, there exist the asymptotic expressions for the
Laguerre functions present in (36):


In,n′(x)

In,n′−1(x)

In−1,n′(x)

In−1,n′−1(x)


 � η


λ̃K1/3(z) +




0
−(1 + ξy)

1
−ξy


 λ̃2K2/3(z) + O(λ3)


 , (47)

where Kν(z) are the modified Bessel functions of the second kind,

η =
√

1 + ξy

3π2
, ξ = 3

2

H

Hc

1

λ
,

z = y

2

(
λ̃

λ

)3

(1 + O(λ2)), λ̃2 = 1 − β2 sin2 θ.

(48)

The dimensionless spectral variable y is related to the photon energy k by the formula

k

E
= ξy

1 + ξy
, 0 < y < +∞. (49)

The coefficients in front of the functions Kν(z) in (47) and the quantity z in (48) are written in
the second and leading orders of λ respectively taking into account that, as can be easily seen,
the quantities λ̃ and cos θ also have the same order of smallness as λ. The latter is valid in the
range of θ where Kν(z) are essentially different from zero; from the physical point of view
this corresponds to the fact that the radiation of a high-energy particle is concentrated close to
the plane of its orbit, and the typical angle of deviation or the spread angle is �θ � λ.

Now using the new variable y instead of k, one finds

W = Wcl

∫
dy sin θ dθ dϕw(y), w(y) = 27

128π3

y2

λ5(1 + ξy)4
�, (50)

where Wcl = 8
27e2m2ξ 2 is the total power of the synchrotron radiation of a high-energy particle

in the classical limit and w(y) is the spectral-angular distribution (normalized and related to y).

2 It can be seen that transitions to the states with n′ ∼ 1 are actually suppressed when n � 1, so that our consideration
is consistent. The issues concerning the approximation we make are discussed in [21] in more detail.
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We shall omit the superscript and denote it as w in what follows. We also express it through
the quantity � = 4S̄/η2, since � represents the angular distribution in a rather convenient
way (see the results below).

The dimensionless quantity ξ introduced in (48) is known as the parameter characterizing
the quantum corrections to the radiation. Actually, recovering the dimensional constants h̄ and
c, we find (note that we are still using the natural scale for e so that the fine structure constant
is α = e2/4πh̄c)

ξ = 3eHE

2m3
→ 3eh̄HE

2m3c5
∼ h̄. (51)

It is easily seen that h̄ emerges exactly through ξ in our problem. At the same time, h̄ is
cancelled out in the leading order (classical) expressions, e.g.,

Wcl = 8

27
e2m2ξ 2 → 8

27

e2m2c3

h̄2 ξ 2 = 2e2

3c

(
eH

mc

)2 (
E

mc2

)2

. (52)

In the case under investigation, although we require λ � 1,H � Hc, the quantity ξ may take
arbitrary values, and we do not make any expansion in its powers. In this respect, our results
are exact, including all the quantum corrections arising. At the same time, pure classical
methods widely adopted in the literature are only applicable when ξ � 1.

5.3. Spectral-angular distribution

Exploiting (47), one can obtain the corresponding asymptotic expressions for S̄, � and thus
for w. Considering the σ - and π -components of the linear polarization of radiation3, one can
choose f as follows (see, e.g., [22]):

fσ = {1, 0, 0},
fπ = {0, cos θ,−sin θ}; (53)

this corresponds to ϕ = π
2 in (34). The specific value of the angle ϕ is inessential due to the

axial symmetry present in our problem. Thus, one obtains

S̄σ = |〈ᾱ1〉|2 , S̄π = |〈ᾱ2〉 cos θ − 〈ᾱ3〉 sin θ |2 . (54)

According to (39) and (49) (taking into account that p = 0), one has

m

E′ ≡ λ′ = λ(1 + ξy),
p′

E′ ≡ p̄′ = −ξy cos θ; (55)

this implies that λ′, p̄′ also have the order of smallness of λ. Note that, by means of (20) and
(43), the quantity � can be expressed in terms of E and p̃ as follows:

� = ζ
√

E2 − p̃2. (56)

Deriving the latter formula, we have neglected the case n = 0 in (20) since it is inessential
in our approach. Now it is possible to write down the quantities defined in (29), related to
both the initial and the final states, expressing them in terms of λ, cos θ, λ′, p̄′ (and also ζ, ζ ′).
So we use (36) and then (28), (30), (29) (taking into account (56)) to evaluate (54); after
that we make expansions in powers of λ, cos θ, λ′, p̄′, keeping the terms up to the order of
λ2. Finally, we use the asymptotic formulae (47), preserving only the leading order in λ. It
appears that the accuracy of the expansions we made is necessary and sufficient for carrying
out the calculations consistently.

3 In the case of the σ -polarization, the electric field vector E is in the (xy)-plane, while for the π -polarization, the
magnetic field vector H lies in this plane.
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Without going into details of the calculations described, we present here the final result
for �i, i = σ, π (having expressed λ′, p̄′ through λ, cos θ , respectively, according to (55)).
Separating the transitions with and without the change of the spin quantum number, one
obtains

�i = 1 + ζ ζ ′

2
�+

i +
1 − ζ ζ ′

2
�−

i , (57)

where

�+
σ = λ̃2((2 + ξy)λ̃K2/3(z) − ζ(ξy)(λ cos δ − cos θ sin δ)K1/3(z))

2,
(58)

�−
σ = λ̃2((ξy)(cos θ cos δ + λ sin δ)K1/3(z))

2

and

�+
π = λ̃2((2 + ξy) cos θK1/3(z) + ζ(ξy) sin δλ̃K2/3(z))

2,
(59)

�−
π = λ̃2((ξy)(cos δλ̃K2/3(z) + ζλK1/3(z)))

2.

When δ = 0, π/2, formulae (58) and (59) turn obviously into the well-known ones from
the synchrotron radiation theory of a transversally and longitudinally polarized electron (see,
e.g., [22]).

From (58) and (59), one can see that the effect caused by the proposed existence of Lorentz
invariance violation in our theory reveals itself in asymmetry of the angular distributions �±

i (θ)

relative to the θ = π/2 plane (i.e. to the plane of the particle orbit). Asymmetry of this kind
is inherent in the radiation of the longitudinally polarized electron and is totally absent in the
case of the transversal polarization; one should remember that considering the influence of
the anomalous magnetic moment (without Lorentz invariance violation), only the transversal
polarization of an electron moving in a magnetic field is conserved. This fact is obvious from
(21) with δ = 0, of course, in the case when the states of an electron under consideration are
the eigenvectors of its Hamiltonian and the time dependence of its wavefunctions is described
by the factor e−iEt (for further details, see [21]). Thus, if Lorentz invariance violation is
present (in the form we have chosen in this work) the electron spin integral of motion receives
an additional longitudinal part and takes the form (21), and according to this, the electron
electromagnetic radiation is changed.

Experimental detection of asymmetry of the angular distribution of the synchrotron
radiation of electrons polarized according to their own (conserved) spin operator could provide
a possibility of estimating the quantity δ and hence b as its function. In order to characterize
this asymmetry one can use, e.g., the quantity

a = wup − wdown

wup + wdown
, (60)

where

wup =
∫ π

2

0
sin θ dθ�, wdown =

∫ π

π
2

sin θ dθ�. (61)

It is clear that in the linear approximation we have a ∼ δ, where the proportionality factor can
be numerically calculated for any given photon energy. The typical curves for �±

i (θ) (namely,
for the normalized functions �̃±

i (θ) = �±
i (θ)/N , where N = ∫ π

0 sin θ dθ�±
i (θ)) are depicted

in figures 1 and 2. The corresponding asymmetry coefficient a is shown in each diagram. In
figure 2 we plotted the curves for the high values of H, δ and the low value of E in order to
make the asymmetry in �+

i (θ) more visible.
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Figure 1. The normalized angular distributions �̃±
i (θ) in the polar coordinate system (�̃, θ)

plotted for k = 1 MeV, ζ = ±1,H = 104 Gauss, E = 1 GeV, δ = 10−3.

6. Discussion and conclusions

The change in the angular distribution and the specific asymmetry of the synchrotron radiation
of an electron caused by the assumed existence of Lorentz invariance violation have already
been discussed in the literature, see, e.g., [12]. However, calculations in [12], as well as
in [13], were based on semi-classical methods outside the framework of the standard model
extension. Moreover, specific modified Lorentz non-invariant dispersion laws for photons and
electrons were adopted there. In this paper, in contrast to [12, 13], we used the SME technique
and employed the standard methods of QED. Our results are based on exact solutions of the
Dirac equation for an electron with a vacuum magnetic moment in a constant magnetic field.
They are due to the peculiar non-perturbative interaction of the electron vacuum magnetic
moment µ with the condensate bα violating Lorentz invariance.

In our work, we considered the radiation phenomena at the entirely quantum level and
obtained the asymptotic expressions for the spectral-angular distribution for the case of a
high-energy particle moving in a relatively weak magnetic field; these expressions incorporate
all the quantum corrections in our problem. The reason is that specific effects caused by the
Lorentz invariance violation present in the theory are closely connected with spin effects, and
they should be handled using the quantum approach; moreover, classical and semi-classical
methods widely adopted in the literature (see, e.g., [11], and also [12, 13]) may not be actually
applicable.

The results we have obtained provide us with the possibility of making some estimates
of the parameter b governing the effects of Lorentz invariance violation in our problem. First
of all, it is believed (see, e.g., [22] and references therein) that it is the transversal electron
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Figure 2. The normalized angular distributions �̃±
i (θ) in the polar coordinate system (�̃, θ)

plotted for k = 0.25E, ζ = ±1,H = 0.1Hc,E = 10m, δ = 0.1.

polarization that is primarily observed in synchrotron-radiation experiments. This implies that
the ‘mixing angle’ δ defined in (11) should be sufficiently small (since the type of polarization
depends on it, see (21)) under the laboratory conditions (E ∼ 1 GeV,H ∼ 104 Gauss), and
this yields the estimate

|b| � µH ∼ 10−6 eV. (62)

In the first approximation, we have used here the well-known Schwinger’s result for the value
of the vacuum magnetic moment: µ � µ0

e2

2π
, where µ0 = e

2m
(also see the discussion below).

The result (62) is more stringent than the typical estimates available in the literature [4].
At the same time, one may argue that in the case of reliable observation of radiation of

the vacuum magnetic moment (the theory of which was developed in [20]) in the absence of
any effects caused by δ �= 0, the estimate becomes appreciably stronger. In fact, as has been
shown, the prevailing effect of δ �= 0 is the asymmetry of the synchrotron radiation, while
the radiation of the vacuum magnetic moment (governed by the small parameter µH/E) is
symmetric with respect to the plane of the particle orbit (of course, it is assumed here that the
particle is transversally polarized and no Lorentz invariance violation is then present). So if no
asymmetry is detected but the radiation of the vacuum magnetic moment is actually observed
(and it is not distorted in any way), it is reasonable to consider that the small parameters of
our problem are related as follows: |δ| � µ̃H/E. By virtue of the definitions of δ and µ̃, (11)
and (13), this condition also guarantees µ̃H/E � µH/E with very good precision, and it is
satisfied when

|b| � (µH)2

E
∼ 10−20 eV. (63)
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However, the latter estimate may need more justification since we did not provide explicit
calculations, and there are also some issues concerning the possibility of reliable experimental
observation of radiation of the vacuum magnetic moment and its interpretation. The fact is
that when b � 10−20 eV, we may neglect the small parameter µ̃H/E while considering the
radiation phenomena.

In our calculations we regarded the quantity µ as a constant, which depends neither on
the particle state nor on the magnetic field strength. However, consistent consideration of the
vacuum magnetic moment phenomenon leads to the conclusion that such a dependence does
exist, and, in particular, µ decreases with growing particle energy [21, 22]. At the same time,
the existence of Lorentz invariance violation, of course, also modifies the vacuum magnetic
moment behavior [6]. When considering this issue, one has to work with not only the fermion
but also the photon sector of the model due to the nature of the vacuum magnetic moment
phenomenon [7]. Nonetheless, in our case, at experimentally feasible energies, the vacuum
magnetic moment should have the general form:

µ = µstd + {corrections}, (64)

where µstd denotes the well-known standard result for the function µ
(

E
m

, H
Hc

)
[21, 22] (in the

zero approximation, in a weak field, it is the constant value found by Schwinger), and the
corrections arise through Lorentz non-invariant interactions of the particle. Thus, one has
from (11) and (64),

δ = arctan

(
b

µstdH + · · ·
)

, (65)

and since we are actually interested in calculating δ in the leading order of the parameters
characterizing Lorentz invariance violation (as we believe that they are small numbers), we
may neglect these additional corrections, preserving only b in the numerator:

δ � b

µstdH
. (66)

The latter expression is finally used when deriving all the estimates.
Thus, according to the comments given above and to definition (11) of the angle δ, one

may conclude that it should increase with growing electron energy (while the second small
parameter µ̃H/E of our problem, in contrast, decreases at least like 1/E). This means that
the effect of the asymmetry of the angular distribution of the synchrotron radiation described
in this work should become more noticeable with growing electron energy E.

It should be noted, however, that since formulae (58) and (59) of this work were obtained
under the assumption δ = const, one can use them for relatively soft photons only, when final
electron states have approximately the same value of δ as the initial one.

The type of the Lorentz symmetry breaking studied in this paper on the basis of the
standard model extension and the particular choice of bµ = {b, 0} does not, of course, exhaust
all the possibilities that can actually find their realization in nature. Nonetheless, the effect
of mixing of transversal and longitudinal polarizations of an electron, with an interpretation
suggested in this work, may provide one of the tests of the possible violation of Lorentz
invariance.
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